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Abstract

Techniques are presented for distributing grid points on parametric surfaces and in
volumes according to a speci�ed distribution of arc length. Interpolation
techniques are introduced which permit a given distribution of grid points on the
edges of a three-dimensional grid block to be propagated through the surface and
volume grids. Examples demonstrate how these methods can be used to improve
the quality of grids generated by trans�nite interpolation.

Introduction

For many applications, the construction of grids on parametric surfaces is a
necessary step in grid generation. If the surface is de�ned by a spline or some
other type of parametric equation, the grid is usually constructed by generating a
grid in parametric space and then evaluating the surface equations at the grid
points in parametric space to obtain grid points on the surface. This method
causes the grid to depend on the parametric de�nition of the surface. If the
parametric representation of the surface is not smooth, as may be the case when
several surfaces are patched together to form a single surface, then the surface grid
will not be smooth. There may also be large di�erences between the distribution
of grid points in parametric space and the distribution of points on the surface.

This report will examine the application of arc length distributions in
redistributing grid points on surfaces and in three-dimensional volumes. Various
redistribution schemes have been developed by Soni [1] and Yu, et al. [2]. The
objective here is to redistribute the points based on the interpolation of relative
arc length from the boundary curves or surfaces. Using this technique relative
spacing o� of the boundary can be prescribed. The commonly used algebraic
interpolation methods do not maintain a uniform spacing along boundary surfaces.
In constructing multiblock structured grids, this can lead to discontinuities in grid
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spacing along block boundaries. Of course, in the three-dimensional case there are
no parametric equations, and the grid point locations are calculated directly from
the arc length distribution. The interpolated relative arc lengths can also be
modi�ed to yield a prescribed absolute spacing at the boundaries. The distribution
of points depends on arc length and not on the parametric representation of the
surface. A more precise distribution can be achieved by repeatedly applying the
redistribution scheme in an iterative manner. Convergence has been shown to be
fast in most cases and does not appear to depend on the grid size.

Surface Grid Distribution

A parametric surface is given by the equation

p = p(u; v); where p = (x; y; z):

The redistribution scheme for surface grids assumes an initial grid which is
associated with a corresponding grid in parametric space. The grid points in
parametric space are given as

(ui;j ; vi;j); i = 1; � � � ; I; j = 1; � � � ; J:

The grid points on the surface are denoted as

pi;j = p(ui;j ; vi;j); i = 1; � � � ; I; j = 1; � � � ; J:

For this initial grid, relative arc length distributions in each coordinate direction
are given as

si;j =

Pk=i

k=2 kpk;j � pk�1;jkPk=I

k=2 kpk;j � pk�1;jk
(1)

ti;j =

Pk=j

k=2 kpi;k � pi;k�1kPk=J

k=2 kpi;k � pi;k�1k
: (2)

The grid point distribution along the boundary of the surface can be prescribed
simply by marching along the boundary curves. However, the problem of
distributing points on the interior is not as simple. For one thing, the most
common grid generation scheme, usually referred to as trans�nite interpolation,
relies on interpolation of the parametric variables from their boundary values. As
a result, the distance between points in the interior does not relate directly to the
distances between corresponding points on the boundary. The parameterization of
the surface may also e�ect the distribution of points in the interior, especially
when there are large changes is the derivatives of the cartesian variables with
respect to the parametric variables.

A redistribution scheme will now be described. Suppose that the boundary points
on the surface have been determined by some one-dimensional scheme for
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distributing points along a parametric curve with a prescribed distribution of arc
length. The relative arc lengths along the boundary are given by the boundary
values of the distributions s and t de�ned in (1) and (2). Namely, the relative arc
lengths along j = 1 and j = J are si;1 and si;J , respectively. Similarly, the relative
arc lengths along i = 1 and i = I are t1;j and tI;j , respectively. Now de�ne a
desired distribution of arc length over the surface by interpolating the given arc
length distributions on the boundary. The new distributions � and � are de�ned as

�i;j =
j � 1

J � 1
si;J +

J � j

J � 1
si;1 (3)

�i;j =
i� 1

I � 1
tI;j +

I � i

I � 1
t1;i (4)

where i = 1; � � � ; I; j = 1; � � � ; J . Now consider u and v as functions of arc length.
With the given values at (si;j ; ti;j); i = 1; � � � ; I; j = 1; � � � ; J , interpolation can be
used to �nd values at (�i;j ; �i;j); i = 1; � � � ; I; j = 1; � � � ; J . The new values of the
parametric variables u and v, corresponding to the desired arc length distributions
in (3) and (4), de�ne the new surface grid. Due to interpolation error, the arc
length distributions of the new grid may not actually match the desired
distributions �i;j and �i;j . This procedure can then be incorporated into an
iterative scheme, and repeated until the desired distribution is achieved to within
a certain tolerance. The accuracy of the method will depend on the interpolation
procedure used to generate the new parametric values. All of the examples of
surface grids have used two-dimensional bilinear interpolation. Other schemes can
be used, and these will be discussed later when considering volume grids.

There are cases where redistribution in only one direction is desired. In such cases,
a simple one-dimensional redistribution scheme can be employed. However, the
present multidimensional scheme can also be used to generate one-dimensional
redistribution of grid points, for example, by setting �i;j = si;j instead of (3) to
produce redistribution along constant i grid lines.

Now suppose absolute spacing o� of the boundary of the surface is to be imposed.
For example, one may wish to have a constant distance between a boundary curve
and the adjacent grid line in the interior. It is assumed that the desired
distribution of points along the boundary of the surface has been obtained using a
method for generating points along parametric curves in space. The boundary
grid points are to remain �xed with the spacings along the boundary blended into
the interior in such a way that the spacing o� the boundary is to be some speci�ed
(possibly nonconstant) value. For a �xed value of j; 1 < j < J , the desired
absolute spacing at the ends are denoted by a1 and aI�1. The interior spacings
are to be determined. The interpolated relative spacings are bi = �i+1;j � �i;j .
Now de�ne a perturbation of the relative spacings as ei; i = 1; � � � ; I � 1, which is
to satisfy the equations

e1 = a1 � b1 (5)
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eI�1 = aI�1 � bI�1 (6)
I�1X

i=1

ei = 0: (7)

If such a set of values can be determined, then a new distribution �i;j can be
de�ned by setting ai = bi + ei and

�i;j =

i�1X

k=1

ai: (8)

Now �1;j = 0 and �I;j = �I;j = 1. The problem of �nding a perturbation e that
yields a monotone distribution remains an unsolved problem for a general surface
with arbitrary boundary spacing. However, many practical grid generation
problems have been solved using a simple quadratic

ei = A(i� 1)2 +B(i� 1) + C (9)

where the coe�cients are calculated from equations (5) - (7) by solving the
resulting linear system of three equations in the unknowns A, B, and C in (9). If
this procedure is used for each j; ; 1 < j < J , and the interpolated relative
distribution � in (3) is replaced by � in (8), then the desired absolute spacing is
achieved at the boundaries j = 1 and j = J . In a similar manner, absolute spacing
at the boundaries i = 1 and i = I can be imposed by replacing the interpolated
distribution � in (4) by a perturbed distribution � .

Volume Grid Distribution

The procedure for generating a volume grid with the arc length distributions
inherited from the bounding surface grids is similar to the procedure for generating
surface grids. In this case, there are no parametric equations to be considered.
Instead, the grid points are computed directly from the arc length parameters.

Suppose an initial grid is given in a three-dimensional volume with grid points

pi;j;k = (xi;j;k ; yi;j;k; zi;j;k); i = 1; � � � ; I; j = 1; � � � ; J; k = 1; � � � ;K:

Relative arc length distributions in each coordinate direction are

ri;j;k =

Pm=i

m=2
kpm;j;k � pm�1;j;kkPm=I

m=2
kpm;j;k � pm�1;j;kk

(10)

si;j;k =

Pm=j

m=2
kpi;m;k � pi;m�1;kkPm=J

m=2
kpi;m;k � pi;m�1;kk

(11)

ti;j;k =

Pm=k

m=2
kpi;j;m � pi;j;m�1kPm=K

m=2
kpi;j;m � pi;j;m�1k

: (12)
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Now it is necessary to de�ne interior arc length distributions by interpolating the
arc length distributions on the bounding surfaces. Consider the arc length
distribution r for the grid lines in the i direction. Its values for j = 1, j = J ,
k = 1, and k = K are de�ned from boundary grid point locations. A
two-dimensional trans�nite interpolation scheme could be used to generate interior
values for a �xed i, however, there is no guarantee that the resulting distribution
would be monotone for �xed values of j and k. Thus the following monotone
interpolation scheme will be described. For each j and k, let

d1 =
j � 1

J � 1
; d2 =

k � 1

K � 1
d3 = 1� d1; d4 = 1� d2

and de�ne

�i;j;k =
1

d1d3 + d2d4
(d2d3d4 ri;1;k + d1d3d4 ri;J;k

+ d1d2d4 ri;j;1 + d1d2d3 ri;j;K): (13)

A similar interpolation formula is used to interpolate s and t. For the distribution
s let

d1 =
k � 1

K � 1
; d2 =

i� 1

I � 1
d3 = 1� d1; d4 = 1� d2

and de�ne

�i;j;k =
1

d1d3 + d2d4
(d2d3d4 si;j;1 + d1d3d4 si;j;K

+ d1d2d4 s1;j;k + d1d2d3 sI;j;k): (14)

For t let

d1 =
i� 1

I � 1
; d2 =

j � 1

J � 1
d3 = 1� d1; d4 = 1� d2

and de�ne

�i;j;k =
1

d1d3 + d2d4
(d2d3d4 t1;j;k + d1d3d4 tI;j;k

+ d1d2d4 ti;1;k + d1d2d3 ti;J;k): (15)

The arc length distributions �, �, and � in (13) - (15) are monotone functions of i,
j, and k, respectively, provided the given surface distributions are monotone. It is
also clear that the surface distributions are interpolated except along edges where
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d1d3 + d2d4 = 0. Along these edges, it can be shown that the limiting values of the
volume distributions are equal to the arc length distribution along the edges.

The grid point locations for the interpolated relative arc length distributions �, �,
and � must now be calculated by interpolating the existing grid with its relative
arc length distributions given by r, s, and t. For most applications, a trilinear
interpolation scheme has proven to be satisfactory. However, it does require a
Newton iteration scheme to determine the local coordinates of an (�; �; �) point in
a cell of the grid de�ned by the points

(ri;j;k ; si;j;k; ti;j;k); i = 1; � � � ; I; j = 1; � � � ; J; k = 1; � � � ;K:

If the grid is highly skewed or if the aspect ratio is very large, the system of
equations which must be solved is ill-conditioned and Newton's method may not
converge. Thus an alternate interpolation method has been implemented to take
care of these cases. The alternate method is a simple inverse distance scheme used
for scattered data interpolation, and commonly referred to as Shephard's method
[3]. Here the set of interpolation points for determining the coordinate values at
(�i;j;k; �i;j;k ; �i;j;k) is limited by considering only grid points near
(ri;j;k ; si;j;k; ti;j;k). However, the stencil of interpolation points should be large
enough to surround (�i;j;k; �i;j;k ; �i;j;k). Otherwise, the method is the same as that
used to interpolate scattered data with the interpolation coe�cients computed
from the inverse square of the distances from (�i;j;k; �i;j;k; �i;j;k) to the nearby
(r; s; t) grid points in (10) - (12). There are no systems of equations to solve and
the method can be used to interpolate cartesian coordinates with any normalized
arc length distribution in the unit cube. On the negative side, the poor precision
properties of inverse distance interpolation will e�ect the smoothness of the grid.
It should only be considered when trilinear interpolation fails.

Either of these interpolation methods can be incorporated into an iterative
scheme. Other interpolation methods can be used. If redistribution is only
required in one direction, then a one-dimensional spline interpolation along grid
lines works well. Alternatively, as described above for surfaces, multidimensional
redistribution can be limited to one or two directions by using the existing
distributions r, s, or t instead of the interpolated values �, �, or � . A succession of
one-dimensional interpolations can be used for multi-dimensional redistribution,
but that method has not always been successful in practice.

Examples

Figure 1 demonstrates an application of the redistribution scheme in generating a
smooth uniformly distributed grid on the fuselage of an F15 �ghter. Note the
reduction of the kink in the grid lines near the nose and the improvement is grid
spacing on the engine shroud.
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Figure 2 contains an application of the three-dimensional redistribution method
for a multiblock grid about an aircraft wing. The spacing discontinuity along the
vertical grid lines passing through the trailing edge clearly shows the block
boundaries in the initial grid. This discontinuity is eliminated after a
redistribution of grid points based on interpolated edge arc lengths. Of course,
this technique is not designed to deal with skewness and the grid is still highly
skewed near the leading edge.

Some computations have been done to investigate the convergence properties
when the redistribution scheme is incorporated into an iterative algorithm.
Figure 3 contains plots of the residuals for both a coarse 10 by 10 grid and a �ne
100 by 100 grid for a parametric surface. This result, and similar results for other
surfaces, indicates that the convergence rate is independent of the grid size. This
is certainly not true for most iterative schemes. Figure 4 compares a volume grid
redistribution using the trilinear interpolation method and the inverse distance
interpolation method. In cases where the grid was not excessively skewed and the
aspect ratio was not extreme, the trilinear interpolation method converged with
the desired distribution of grid points. On the other hand, the inverse distance
interpolation method generally converged much slower or diverged as in Figure 4.
This is probably caused by the lower precision of the inverse distance interpolation.

Conclusions and Recommendations

Arc length distribution schemes that have been widely used for de�ning grids on
curves can be generalized to generate grids on surfaces and in volumes. With this
approach to generating a structured grid, the spacings set along block edges can in
fact be propagated into the entire region. Further generalizations might include
surface curvatures or solution gradients in determining the distributions. Thus,
this technique could be used to cluster grid points in regions of high curvature or
where solution gradients are large.

There are still areas where additional work is needed. Imposing absolute spacing
at boundary curves and surfaces is not always possible due to the inability to
come up with a monotone distribution in some cases. There is also a need for a
more accurate and stable interpolation scheme for interpolating on highly skewed
distribution grids. More accurate scattered data interpolation methods do exist
and should be considered for interpolation on highly skewed grids. However, most
of these schemes require derivatives of cartesian variables with respect to arc
length.

Although grids with desired distributions have been generated for many di�erent
surfaces and regions, the question remains as to whether it is always possible to
generate a grid with a given arc length distribution. The answer would seem to be
no, especially in the case where the grid is extremely skewed. For a skewed grid,
the arc length distributions in two coordinate directions might be di�erent, but
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the coordinate lines themselves would be nearly parallel. The distributions along
two such lines would be highly dependent and it does not appear that satisfying
two separate arc length distributions would be possible.

References

1. B. K. Soni, \Algebraic Methods and CAGD Techniques in Structured Grid
Generation," in Numerical Grid Generation in Computational Fluid
Dynamics and Related Fields, N. P. Weatherill, P. R. Eiseman, J. Hauser,
and J. F. Thompson, editors, Pineridge Press, Swansea, U. K., 1994.

2. T.-Y. Yu, B. K. Soni, and M.-H. Shih, \Geometry Modeling and Grid
Generation using 3D NURBS Control Volume," in Surface Modeling, Grid
Generation, and Related Issues in Computational Fluid Dynamic (CFD)
Solutions, NASA CP 3291, May 1995.

3. D. Shepard, \A Two-Dimensional Interpolation Function for
Irregularly-Spaced Data," in Proceedings of the 23rd National Conference of
the ACM, 1968.

(a) original grid

(b) after redistribution

Figure 1. Surface arc length redistribution for F15 fuselage.
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(a) original grid

(b) after redistribution

Figure 2. Volume arc length redistribution for multiblock grid about
aircraft wing - interior grid surface shown.
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Figure 3. Convergence with coarse and �ne surface grids.
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Figure 4. Convergence with trilinear and inverse distance interpolation.


